
 1

Dbank’s Time Series Object Model

When Dbank is installed in Windows 9x/NT, the setup program installs a dynamic link
library called “readdb.dll” the Windows system area. This library defines a time series
object (COM) that can be used in Microsoft Visual Basic, Visual Basic for Applications,
Power Builder, Visual C++, and Active Server Pages to manage Dbank time series.

Much like one would define a standard integer in Microsoft Visual Basic, Dbank’s time
series object enables a programmer to define a time series object with predefined
attributes, rules and procedures. These attributes and procedures allow a programmer to
create Dbank data banks, revise existing time series in a data bank, extract fundamental
properties of series saved in the databank, and manipulate a set of time series as a unit.

The purpose of this manual is to provide a brief, but comprehensive description of
Dbank’s time series object model. The manual assumes that your base language is Visual
Basic (VB) or Visual Basic for Applications (VBA).

1. Accessing Dbank’s Time Series Object From VB/VBA

Before you can access Dbank’s time series object model, you need to (a) install Dbank;
and (b) activate a reference to the dynamic link library that actually defines the object
(“readdb.dll”, typically saved in the Windows system area).

From VB, click on “Project”, then “References” and select “Read and Write Dbank Time
Series Files” by checking the appropriate check box.

From VBA (e.g., Microsoft Excel), click on “Tools”, followed by “References” and
select “Read and Write Dbank Time Series Files”.

2. Defining a Time Series Object From Visual Basic/Visual Basic for
Applications

Dbank’s time series object is called “dbTimeSeries”. Much like any other objects in
Visual Basic, VB/VBA’s Dim statement is used to declare a new time series object.
Thus:

Dim X as New dbTimeSeries
‘Defines X to be a Dbank time series object

The following syntax is also valid VB/VBA:

Dim Y as dbTimeSeries ‘ “new” keyword is absent
 ‘Defines Y to be an object variable ‘that

can reference a Dbank time-‘series object

However, this statement does not actually create a time series object; here “Y” can only
refer to an existing time series object. Normally, statements of this type are followed by:

 2

Set Y = X

which essentially provides another name for the time series object X.

3. Defining a Time-Series Object from Visual Script/Active Server Pages

Dbank’s dbTimeSeries object can be used within active server pages. The following VB
script creates a dbTimeSeries object on the server itself:

 dim objTsd
 set objTsd = Server.CreateObject("DbankEngine.dbTimeSeries")

4. Defining the Number of Observations

When you first define a time series, it has only one observation, and the value of this
observation is automatically set to Dbank’s missing value code. Use the “Nobs” property
(attribute) of a series to change the number of observations in the time series. The
following code increases the number of observations of X to 100:

 Dim X as New dbTimeSeries
 X.Nobs = 100 ‘Change observation count from 1 to 100

5. Reading/Writing Dbank Time Series Variables

A fully qualified time series name in Dbank has the following form (optional components
are indicated using {}):

{<ServerName>}Database{:}{[Group]}SeriesName
where:

<ServerName> = Name of an accessible Microsoft SQL Server, e.g., <ORION>
Database = Name of the SQL or Access database to store the time series
Group = time series group or container
SeriesName = time series name

If <ServerName> is omitted, Dbank user the Microsoft Access engine to store time
series. For example,

“c:\Program Files\Dbank32\example[ace]a”

implies that the time series “a” can be found in the Microsoft Access database

“c:\Program Files\Dbank32\example.mdb”

in the group called “[ace]”. As another example,

“<ORION>example[ace]a”

 3

implies that the time series “a” can be located in the database “example” that exists on the
Microsoft SQL Server called “ORION”. Again, the time series belongs to the group
called “[ace]”.

The following VB/VBA statements read a Dbank time series and write it to new data
bank on a Microsoft SQL Server called “TSSQL”:

 Dim X as New dbTimeSeries
 If X.Read(“c:\Program Files\Dbank32\example[ace]a”) Then
 X.Save(“<tsSQL>newdb[ace]a”)
 End If

The “Read” method retrieves a time series from a physical database (which means
reading the actual numerical data as well as its attributes, e.g. its title) into “X” and
returns “True” if the read was successful. In this example, the “Save” method writes the
same series to a new data bank called “newdb” that exists on the SQL server “tsSQL”.

Note that the “Save” method automatically creates new data banks. A new databank is
automatically created before the actual save takes place.

Accessing values of a time series is straightforward using the “DataValue” property of a
series. This property allows you to retrieve and set the value of a series at a particular
date (or offset). For example, the following code creates a trend variable starting at 1
with 100 observations. The time series frequency is quarterly, and starts in 1961:1.

Dim X as New dbTimeSeries
X.Frequency = “Q”
X.Nobs = 100
X.StartDate = “1961:1”
For j = 1 to X.Nobs : X.DataValue(j) = j : Next j
X.Save(“example[test]trend”)

‘Now display 1968:4
Msgbox X.DataValue(“1968:4”)

A usual feature of the DataValue() method is that you can retrieve values of the time
series at different frequencies of the native frequency. For example,

Msgbox X.DataValue(“1968A”)

will display the “annual” value of X for 1968. Conversion will occur on the fly, using the
conversion method attached to the X object.

This completes the basics of defining Dbank time series objects in Visual Basic/Visual
Basic for Applications, and reading and writing time series variables to data banks. The
remaining sections of this guide provide a reference to all the properties and methods
supported by Dbank’s time series object. It what follows, we assume that the time series
object name is “ts”.

 4

Acf() Method [Double]
__

Returns the jth autocorrelation coefficient of the series.

Syntax:

ts.Acf(j)

Example

‘Display the first 10 autocorrelations
Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

For j=1 to 10
 MsgBox X.Acf(j)

 Next j
End If

Adf() Method [Boolean]
__

Returns the augmented Dickey-Fuller statistic of the time series. The caller can control
the number of lags included in the fitted regression, as well as the order of the polynomial
trend.

Syntax:

ts.Adf(Lags, TrendOrder)

The Adf property has these parts:

Part Type Description

[Lags=0] Variant Number of lags in the fitted regression.

[TrendOrder=-1] Variant Order of the polynomial included in the fitted regression.

Example

Dim X as New dbTimeSeries
Dim MaxLags, TrendOrder, j
MaxLags = 10
TrendOrder = 0 ‘Constant term only
If X.Read(“example[ace]a”) Then

For j=1 to 10: MsgBox X.Adf(j, TrendOrder): Next j
End If

 5

BackTrim() Method [dbTimeSeries]
__

Removes or deletes observations from the end of a series. This method returns a new
time series object (dbTimeSeries).

Syntax:

ts.BackTrim(Amount)

The BackTrim property has these parts:

Part Type Description

[Amount] Variant Number of (recent) observations to strip from the
 series, specifically Obs(N-Amount+1:N), where
 N is the beginning number of observations.

If the argument is omitted and there is at least one non-missing value in the series,
BackTrim removes all the trailing missing values found in the series.

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

MsgBox X.Nobs ‘Display the number of observations
X.BackTrim(5) ‘Remove 5 most recent observations
MsgBox X.Nobs ‘Display observation count

End If

Browse() Method [Boolean]
__

Invokes Dbank’s time series browser form, which displays time series attributes in a
Window. The Browse form is invoked in a non-modal fashion by default.

Syntax:

ts.Browse([Optional LoadAsModal=False])

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

If X.Browse Then
 MsgBox “Browse operation successful.”
End if ‘Display X’s attributes using Dbank’s browser

End If

 6

ClearData() Method [Variant]
__

Sets all the current observation in the series to the missing value. The observation count
is not affected.

Syntax:

ts.ClearData

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.ClearData
MsgBox X.MissingCount=X.Nobs ‘Displays true

End If

 7

ConversionMethod() Property [Enum, tsConversionMethod]
__

Sets the conversion method to be used by default when converting a series to any
frequency that would result in a smaller number of observations (i.e., consolidation
occurs).

Syntax:

ts.ConversionMethod = ConversionMethodCode

The following conversion methods are supported:

Code (Enum) Consolidation/Conversion Method
tsAverage Average of the observations
tsFirst Use first observation
tsMidPoint Mid-point observation
tsLast Last Observation
tsSum Sum of observations
tsNoMethod None; equivalent to “no” consolidation
tsMaximum Maximum Observation
tsMinimum Minimum Observation
tsBeginning First valid (non-missing) observation
tsEnding Last valid (non-missing) observation
tsRange Observation Range
tsCount Number of observations in the consolidation set
tsVariance Variance of the observations
tsStDeviation Standard deviation of the observations
tsAverageIgnoreMissing Average of the observations (ignoring missing values)
tsFirstIgnoreMissing Use first observation (ignoring missing values)
tsMidPointIgnoreMissing Mid-point observation (ignoring missing values)
tsLastIgnoreMissing Last Observation (ignoring missing values)
tsSumIgnoreMissing Sum of observations (ignoring missing values)
tsNoMethodIgnoreMissing None; equivalent to “no” consolidation (ignoring missing values)
tsMaximumIgnoreMissing Maximum Observation (ignoring missing values)
tsMinimumIgnoreMissing Minimum Observation (ignoring missing values)
tsBeginningIgnoreMissing First valid (non-missing) observation (ignoring missing values)
tsEndingIgnoreMissing Last valid (non-missing) observation (ignoring missing values)
tsRangeIgnoreMissing Observation Range (ignoring missing values)
tsCountIgnoreMissing Number of non-missing observations in the consolidation set
tsVarianceIgnoreMissing Variance of Observations (ignoring missing values)
tsStDeviationIgnoreMissing Standard deviation of observations (ignore missing values)

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.ConversionMethod = tsLast
X.Save

End If

 8

Convert() Method [dbTimeSeries]
__

The Convert() method alters the frequency of a series. It can either can reduce (i.e.,
consolidate) or expand (i.e., interpolate) the number of observations in a series. This
method returns a dbTimeSeries object.

For example, if an “annual” series is converted to “quarterly”, the Convert method can
interpolate using any one of the following valid interpolation procedures:

Linear Interpolation
Cubic-Spline
Series Expansion
Repeat
Geometric Interpolation.

Dbank can position the original data at the beginning, middle, or end of a particular
period before interpolation occurs.

Note that, by default, missing values will be ignored during consolidation. You can
change this behavior by setting the optional “IgnoreMissing” parameter to True.

Syntax:

ts.Convert(TargetFrequency, [ConversionMethod], [InterMethod=tsSpline],
[IgnoreMissing=True])

The Convert method has these parts:

Part Type Description

TargetFrequency String Target frequency: “A”=Annual; “H”=Bi-Annual;
 “Q”=Quarterly; “M”=Monthly; “W”=Weekly;
 “F”=Financial (5-day); “S”=Financial (6-day);
 “D”=Financial (7-day)

[ConversionMethod] Variant Actual conversion method to use (Enum);
 If omitted, conversion method uses the
 “ConversionMethod” attribute of the series (if any).

[InterMethod] Variant Interpolation method to use if interpolation is required.
 InterMethod defaults to cubic spline interpolation if it is
 omitted from the argument list.

[IngnoreMissing] Boolean Determines whether missing values are to be ignored
 during consolidation. The default setting is True.

 9

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then
 Msgbox X.Frequency ‘Quarterly series

X.Convert(“A”, tsAverage)
‘Move from quarterly to annual
MsgBox X.Frequency ‘Annual series

End If

ConvertName() Property [String]
__

Returns the full name of the default conversion method saved with the series. The result
is a string reflecting the proper name of the default conversion method.

Syntax:

ts.ConvertName

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.ConvertName ‘Displays “Average”
End If

CopyMe() Method [Boolean]
__

Creates a copy of an existing time series object. You can control whether the method
also copies the data values associated with the time series using the optional
“SkipDataCopy” parameter. CopyMe() returns “True” if successful.

Syntax:

ts.CopyMe(Target as dbTimeSeries, [SkipDataCopy=False])

Example

Dim X as New dbTimeSeries
Dim Y as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.CopyMe(Y)
End If

 10

CopyMyData() Method [Boolean]
__

Copies the data values embedded in a time series to an array of double variables. The
array of double values may optionally contain 3 dimensions. Make sure you set the
optional parameter “HasMoreThanOneIndex” to “True” if you pass such an array to the
procedure. The method will re-dimension the array if necessary so that it can contain all
the data stored within the time series object. The CopyMyData() method is very useful
for speeding up data manipulations that do not involve time arithmetic.

Syntax:

ts.CopyMyData(DataArray() as Double, Nobs, [HasMoreThanOneIndex=False])

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then
 ReDim DataValues(1 to X.Nobs)
 Call X.CopyMyData(DataValues(),X.Nobs)
 ‘DataValues() will now have a copy of all the values in X
End If

Correlate() Method [Double]
__

Returns the correlation coefficient between two series of the same frequency. You can
optionally the covariance between two time series of the same frequency by setting the
optional “ReturnCovariance” parameter to “True”

Syntax:

ts.Correlate(y as dbTimeSeries,[ReturnCovariance=False])

Example

Dim X as New dbTimeSeries
Dim Y as New dbTimeSeries
Dim Ok as Boolean
Ok = X.Read(“example[first.bp]bpeir”)
Ok = Ok And Y.Read(“example[first.bp]bpemsr”)
Ok = (X.Frequency = Y.Frequency)
If Ok Then
 MsgBox X.Correlate(Y)‘Display the correlation coefficient
 MsgBox X.Correlate(Y, True)
 ‘Display the covariance

 11

Cost() Property [Long]
__

Sets (or returns) cost of updating a series from a remote site. This attribute is useful for
primarily for data providers who use Dbank to distribute their data over the Internet. Note
that this attribute is not normally used for standard time series work.

Syntax:

ts.Cost([Value as Long]]

The Cost method has these parts:

Part Type Description

Value Long Cost in cents to update the series.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.Cost = 100 ‘Series costs $1 to update
X.Save

End If

Covariance() Method [Double]
__

Returns the covariance between two series of the same frequency.

Syntax:

ts.Covariance(y as dbTimeSeries)

Example

Dim X as New dbTimeSeries
Dim Y as New dbTimeSeries
Dim Ok as Boolean
Ok = X.Read(“example[first.bp]bpeir”)
Ok = Ok And Y.Read(“example[first.bp]bpemsr”)
Ok = (X.Frequency = Y.Frequency)
If Ok Then
 MsgBox X.Covariance(Y)‘Display the covariance

 12

Created() Property [Double]
__

Returns the actual time that the series was added to the data bank (i.e., first saved to the
data bank). The return value is a real value in Microsoft’s date serial format. The integer
part implies the year, month, and day that the series was created; the fractional part
implies an hour and second.

Syntax:

ts.Created

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox Format(X.Created,”dddddd”)
‘Display creation date using Windows long-date format

End If

CreatedBy() Property [String]
__

Returns the name of the account that added the time series to the databank.

Syntax:

ts.CreatedBy()

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.CreatedBy
End If

 13

Databank() Property [String]
__

Sets or returns the fully qualified name of the data bank to which the series might be
saved and/or updated.

Syntax:

ts.Databank [= value]

The DataBank property has these parts:

Part Type Description

[Value] String Data bank (or home) of the series.

Example

Dim X as New dbTimeSeries
If X.Read(“c:\dbank32\example[first.bp]bpeir”) Then

MsgBox X.Databank ‘Displays “c:\dbank32\example”
X.DataBank = “c:\dbank32\newexample”
MsgBox X.DataBank ‘Displays “c:\dbank32\newexample”
X.Save ‘Saves X to c:\dbank32\newexample[first.bp]

End If

DataSource Property [String]
__

Sets or returns the data source of a series. The “data source” can be an arbitrary string
that describes the actual source of the data.

Syntax:

ts.DataSource [= value]

The DataSource property has these parts:

Part Type Description

[Value] String Data source of the time series

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.DataSource = ”DRI/Basic Economics”
MsgBox X.DataSource ‘Display the new data source
X.Save ‘Update the series

End If

 14

DataValue Property [Double]
__

Sets or returns the value of a data point in a series. You must supply a valid time series
index (integer or string) to successfully retrieve a particular data value from a time series
object.

The DataValue() method can also be used to retrieve values of the series at frequencies
other than the series actual frequency (as recorded in the time series object, i.e., returned
by the “Frequency” method). For example, the DataValue() method can be used to
retrieve annual value of a quarterly series. In this case, Dbank’s time series object will
perform an automatic conversion in memory and then return the appropriate annual
value.

The conversion method attribute of the source series needs to be set for this feature to
work properly.

Syntax

ts.DataValue (Index) [= value]

The DataValue method has these parts:

Part Type Description

Index Variant String or value defining the index of the observation
[Value] Double Observation value

Example 1

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.DataValue(10) = 0.5 ‘Change 10th observation to 0.5
X.Save(“example[ace]a_new”)

End If

Example 2

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.DataValue(“1975:1”) ‘Displays 6113
MsgBox X.DataValue(25) ‘Displays 6113
X.DataValue(“1975:1”) = 6500
MsgBox X.DataValue(“1975:1”) ‘Displays 6500
MsgBox X.DataValue(25) ‘Displays 6500

End If

 15

Remarks

• When a string is used to index an observation, it must be in the format understood by

the series. This format basically depends on the frequency of the time series, and, in
the case of weekly and financial data in particular, the date settings for Windows
9x/NT specified in Control Panel. The following table illustrates some of the string
formats supported:

Table 2: Dbank Date Serial Formats

Frequency Description Index Format
“A”, “Yn” Annual or Higher “yyyy”
“H” Half-yearly “yyyy:1” or “yyyy:2”
“Q” Quarterly “yyyy:p”, p = 1, 2, 3, or 4
“R” Every 4 months “yyyy:p”, p = 1,2,3
“O” Every 2 months “yyyy:p”, p = 1,2,3,4,5, or 6
“M” Monthly “yyyy:p”, 1 ≤ p ≤ 12
“F” Financial “yy/mm/dd”, depending on date setting in Windows

Control Panel
“B” Bank-Week “yy/mm/dd”, depending on date setting in Windows

Control Panel
“S” Financial (6-day) “dd/mm/yy”, depending on date setting in Windows

Control Panel
“D” Financial (7-day) “mm/dd/yy”, depending on date setting in Windows

Control Panel

• When accessing financial data, be sure to be consistent with the current date settings

in Windows control panel.

• You can specify a target frequency by adding the target frequency letter to the end of

the date serial. Thus, MsgBox X.DataValue(“1999A”) will return the annual value of
a time series in 1999 (using the internal conversion method to compute the annual
value), irrespective of its actual frequency.

 16

DateSerial() Property [String]
__

Returns the time-stamp of an observation in Dbank format, which depends on the series’
frequency and your Window 9x/NT settings for dates (see Table 2, Page 20).

Syntax:

ts.DateSerial(Index)

The DateSerial method has these parts:

Part Type Description

Index Long Array index of an observation.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.DateSerial(25) ‘Displays “1975:1”
X.DataValue(X.DateSerial(25)) = 6500
MsgBox X.DataValue(“1975:1”) ‘Displays 6500
X.Save

End If

 17

Day Property [Long]
__

Returns a long integer representing the day of the month that an observation belongs to.

If the frequency of the series is less than weekly (i.e., yearly, annual, half-yearly,
quarterly, or monthly), this function returns a integer that depends on the series’
“ConversionMethod” attribute.

Syntax

ts.Day(Index)

The Day method has these parts:

Part Type Description

Index Variant String or value defining the index of the observation.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.ConversionMethod = tsAverage
MsgBox X.Day(25) ‘Returns 15
X.ConversionMethod = tsFirst
MsgBox X.Day(25) ‘Returns 1
X.ConversionMethod = tsFirst
MsgBox X.Day(25) ‘Returns last day of the month
X.Save

End If

Remark:

When a string is used to index an observation, it must be in the format understood by the
series. This format depends on the frequency of the series, and, for financial and weekly
data in particular, the active dates format settings for Windows (see Regional Settings in
Control Panel). See Page 20, Table 2 for more information.

 18

Decimals() Property [Long]
__

Sets or returns the number of decimal points to show whenever a series is displayed in
Dbank’s viewer. The numerical values of the data are unaffected.

Syntax:

ts.Decimals [= value]

The Decimals method has these parts:

Part Type Description

Value Long Number of decimals

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.Decimals = 2
X.Save ‘Update the series

End If

Delete() Method [Boolean]
__

Removes a series from a data bank. Returns “True” if successful.

Syntax:

ts.Delete

Example

Dim X as New dbTimeSeries
X.Name = “example[first.bp]bpeir”
If X.Exists Then

If X.Delete Then
MsgBox Ucase$(X.Name) & “ deleted successfully.”

End If
End If

 19

DoornickHansen() Method [Double]
__

Returns the Doornick-Hansen statistic for the null hypothesis of normality of the time series. It
possesses a Chi-Square distribution with 2 degrees of freedom under the null hypothesis of
normality.

Syntax:

ts.DoornickHansen

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.DoornickHanse
X.Save

End If

Drop() Method
__

Drops (strips) all observations in a series after a given date/index.

Syntax:

ts.Drop(Index)

The Drop method has these parts:

Part Type Description

Index Variant Observation index.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.Drop(“1975:1”) ‘Removes all data after 1975:1
X.Save

End If

Remark:

When a string is used to index an observation, it must be in the format understood by the
series. This format depends on the frequency of the series, and, for financial and weekly
data in particular, the active dates format settings for Windows (see Regional Settings in
Control Panel). See Page 20, Table 2 for more information.

 20

Edit() Method [Boolean]
__

Invokes Dbank’s time series editor, which allows you to edit the attributes and data
stored within a time series object. Dbank’s Edit form is invoked in a non-modal fashion
by default.

Syntax:

ts.Browse([Optional LoadAsModal=False])

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

If X.Edit Then
 MsgBox “Edit operation successful.”
End if

End If

ExcelData() Method [Variant]
__

This method returns an array of variants containing the va lues embedded in the time
series. The data are formatted so that they can be copied to Excel cell objects without
further translation. In particular, the variant array will represent missing values as empty
strings. Doing so causes the least havoc when transferring double values to Excel.

Syntax:

ts.ExcelData()

Example

Dim X as New dbTimeSeries
X.Name = “example[first.bp]bpeir”
If X.Exists Then
 Dim ExcelData as Variant
 ExcelData = X.ExcelData()
 MsgBox ExcelData(1) ‘First value of X
End If

 21

Exists() Property [Boolean]
__

Tests whether a time series exists in the named database. Returns “True” if successful;
“False” otherwise.

Syntax:

ts.Exists

Example

Dim X as New dbTimeSeries
X.Name = “example[first.bp]bpeir”
If X.Exists Then

If X.Delete Then
MsgBox Ucase$(X.Name) & “ deleted successfully.”

End If
End If

FindAllMyAliases() Method [Variant]
__

This method returns an array of variants containing the fully qualified names of all the
series that point to the named time series. The “Count” parameter returns the number of
alias variables found by the method.

Syntax:

ts.FindAllMyAliases(Count as Long)

Example

Dim X as New dbTimeSeries
X.Name = “example[first.bp]bpeir”
If X.Exists Then
 Dim Aliases as Variant, Count as Long
 Aliases = X.FindAllMyAliases(Count)
 If Count > 0 Then MsgBox Aliases(Count)
End If

 22

FirstDay() Property [Long]
__

Sets (or returns) the first day of a time series. This property will affect the starting date
of weekly and financial (5-day, 6-day, and 7-day) series. The frequency of the series
should be set before using the FirstDay method.

Syntax:

ts.FirstDay [= value]

The FirstDay method has these parts:

Part Type Description

Value Integer First day of the month

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.FirstDay = 1: X.Save(“example[new]bpeir”)
End If

FirstPeriod() Property [Long]
__

Sets (or returns) the first period (month, quarter, half-year) of a series. This setting
affects the starting date of a series. The frequency of the series must be set before using
the FirstPeriod method.

Syntax:

ts.FirstPeriod [= value]

The FirstPeriod method has these parts:

Part Type Description

Value Integer First period of the year

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.FirstPeriod = 2: X.Save(“example[new]bpeir”)
End If

 23

FirstQuartile Property [Double]
__

Returns the first-quartile of a series.

Syntax:

ts.FirstQuartile

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.FirstQuartile ‘Display first quartile
End If

FirstValidIndex Property [Long]
__

Returns an integer that indicates the position or array index of the first valid (i.e., non-
missing) observation in a series.

Syntax:

ts.FirstValidIndex

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

For j = X.FirstValidIndex to X.LastValidIndex
If X.IsValidObs(j) Then

 X.DataValue(j) = Log(X.DataValue(j))
 ‘Convert series to logs

End If
Next j
X.Save ‘Update the series

End If

 24

FirstYear Property [Long]
__

Sets (or returns) the first year of a series. This setting affects the starting date of a series.
The frequency of the series must be set before using the FirstYear method.
Syntax

ts.FirstYear [= value]

The FirstYear method has these parts:

Part Type Description

Value Integer First year

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.FirstYear = 1990
X.Save(“example[new]bpeir”)

End If

FiscalOffset() Property [Long]
__

Sets or returns the “fiscal offset” of the time series. The fiscal offset is used to
automatically lead/lag a time series the current number of places so that it returns the
correct data value for a given fiscal (as distinct from calendar) date. For example, setting
the fiscal offset to 3 for monthly data will lead the monthly data values by 3 places before
returning the value associated with a given date (which in this case is often called the
fiscal date).

Syntax:

ts.FiscalOffset [= NumberOfPeriods]

The FiscalOffset method has these parts:

Part ___________ Type Description

NumberOfPeriods Long Number of places to lead the series (specify a
 negative value for lag).

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.FiscalOffset = 2: X.Save : End If ‘Update the series

 25

FiscalValue() Method [Double]
__

Returns the value of a data point in a series at a given fiscal (rather than calendar) date.
You must supply a valid time series index (integer or string) to successfully retrieve a
particular fiscal value from the time series object.

The FiscalValue() method can also be used to retrieve values of the series at frequencies
other than the series actual frequency (as recorded in the time series object, i.e., returned
by the “Frequency” method). For example, the FiscalValue() method can be used to
retrieve annual fiscal value of a quarterly series. In this case, Dbank’s time series object
will perform an automatic conversion in memory and then return the appropriate annual
value.

The fiscal offset of the source series needs to be set to a non-zero value for FiscalOffset
to return values that are, for the same index, different from the DataValue() method.
The default setting of FiscalOffset is zero.

FiscalValue() accepts the same arguments as the DataValue() method.

 26

Footnote() Method [String]
__

Dbank supports observation footnotes. Observation footnotes allow you to add
descriptive text to a particular observation. Any number of footnotes can be attached to a
particular observation. However, each footnote must be given a unique name.

This method returns (or sets) the caption associated with a footnote at a particular date.
You must supply a valid date index and the name of the footnote (typically a string) to
retrieve the footnote entry.

Syntax:

ts.Footnote(DateIndex, FootNoteName) [= FootNoteEntry]

The Footnote method has these parts:

Part ___________ Type Description

DateIndex Variant String or value defining the index of the observation
FootNoteName Variant Footnote identifier.

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

MsgBox X.FootNote(1,”First”) ‘Retrieve the footnote called “A”
‘Now update the footnote
X.Footnote(1,”First”) = “This is my first footnote.”

End If

 27

Frequency Property [String]
__

Sets or returns the frequency of a series. Dbank supports the following frequencies:

• Yearly (“Yn”) [e.g., “Y2” means one data point every two years]
• Annual (“A”)
• Half-yearly (“H”)
• Every three months (“R”)
• Every two months (“O”)
• Monthly (“M”)
• Quarterly (“Q”)
• Weekly (“Wn”), where n is the starting day of the week (1 = Sunday)
• Bank-Week (“B”), in which observations occur 4 times per month, and

on the 8, 15, 22, the last day of the month.
• 5-day Financial (“F”)
• 6-day Financial (“S”)
• 7-day Financial (“D”)

Syntax:

ts.Frequency [= value]

The Frequency method has these parts:

Part Type Description

Value String Frequency code

Example

Dim X as New dbTimeSeries
X.Nobs = 100
X.Frequency = “Q”
X.StartDate = “1961:1”
For j = 1 to X.Nobs

X.DataValue(j) = j^2
Next j
X.Save(“example[test]trend_squared”)

 28

FrequencyCount Property [Long]
__

This method returns the frequency count of a series. This property is used only for series
with yearly (“Y”) frequency. It determines the number of years between observations.
For example, the frequency count of annual data is one.

Syntax:

ts.FrequencyCount [= value]

The FrequencyCount method has these parts:

Part Type Description

Value Long Observation interval (must be positive)

Example

Dim X as New dbTimeSeries
X.Nobs = 100
X.StartDate = “1961”
X.Frequency = “Y3” ‘Expect an observation every 3 years
For j = 1 to X.Nobs

X.DataValue(j) = j^2
Next j
MsgBox X.FrequencyCount ‘Displays “3”

 29

FrontTrim() Property [dbTimeSeries]
__

Removes observations from the beginning of a series, and returns a dbTimeSeries object
with the result.

Syntax:

ts.FrontTrim(Amount)

The FrontTrim property has these parts:

Part Type Description

[Amount] Variant Number of observations to strip from the start of the series.
 Can also be specified as a date, in which case the method
 removes all the observations before the indicated date.

If the argument is omitted, FrontTrim removes the leading missing values in the series.

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

MsgBox X.Nobs ‘Display the number of observations
X.FrontTrim(5) ‘Remove 5 starting observations
MsgBox X.Nobs
‘Display observation count (95)

End If

 30

FullName() Property [String]
__

Returns the fully qualified name of a series. Fully qualified names contain the data bank,
group, and short name of the series in the following format:

databank[group{.sub_group{.sub_sub_group}}]short_name

Syntax:

ts.FullName

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

MsgBox X.FullName ‘Display full name of the series
‘ In this case, “example[ace]a”

End If

Remarks

• Series names and sub-group names can each be up to 64 characters long.
• Spaces are not permitted in series names, but allowed in group names.
• Periods (“.”) can be used in the series short name.
• There is no restriction on the depth of the data bank group tree. Simply separate each

level of the tree by a period (“.”). For example, “a.b.c” defines the group “c” which
belongs to “b” (its parent). The group “b”, in turn, belongs to “a”.

 31

GeometricMean() Property [Double]
__

Returns the geometric mean of a series.

Syntax:

ts.Geometric Mean

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.GeometricMean ‘Display geometric mean
End If

GetIndex() Method [Long Integer]
__

Returns a positive integer indicating the position (or array index) of the observation in the
series. The GetIndex() method accepts a variant/string argument that represents a valid
date to Dbank and returns a long integer.

Syntax:

ts.GetIndex(DateSerial)

The GetIndex property has these parts:

Part Type Description

DateSerial Variant Dbank date string

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.GetIndex(“1971:3”) ‘Displays 27
End If

 32

GetTimeSeriesAttributes() Method [Boolean]
__

Populates a dbTimeSeries object with all of the attributes of a series without reading the
observations. This function is provided to enhance the speed of certain routines that do
not need access to the actual data saved with the series.

Syntax:

ts.GetSeriesAttributes(TimeSeriesName)

The GetSeriesAttributes method has these parts:

Part Type Description

TimeSeriesName Variant Fully qualified time series name

Example

Dim X as New dbTimeSeries
If X.GetTimeSeriesAttributes(“example[ace]a”) Then

MsgBox X.GroupName ‘Displays “[ace]”
MsgBox X.Frequency ‘Displays “N”
MsgBox X.StartDate ‘Displays 1
Msgbox X.Nobs ‘Displays 100

End If

Remarks

• This function should be used with extreme caution. Because it does not read the

observations of the time series, it is easy to accidentally set all the data in the series to
missing in the actual data. The following code snippet will essentially destroy all the
non missing data in the series:

Dim X as New dbTimeSeries
If X.GetTimeSeriesAttributes(“example[ace]a”) Then

MsgBox X.Group ‘Display [ace]
X.Clear
X.Save ‘Clears the data (accidentally?).
‘Observation count remains 100 (but all are missing)

End If

 33

Group Property [String]
__

Sets or returns the group name of the series. The format of the group name is:

“[group{.sub_group{.sub_group}}]”

For example, “a.b.c.d”, or simply “a”. Thus periods (“.”) separate levels in the tree.

Syntax:

ts.GroupName [= value]

The GroupName property has these parts:

Part Type Description

Value Variant String representing a group in the data bank.

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

MsgBox X.GroupName ‘Displays “[ace]”
‘Now change the group name to [test]
X.GroupName = “[ace.first.second.not_practical]”
MsgBox X.GroupName
‘Displays “[ace.first.second.not_practical]”
X.Save
‘ Saves the series to
‘ “example[ace.first.second.not_practical]a”

End If

Remarks

• Group (and sub-group) names can each be up to 64 characters long.
• Spaces are not permitted in group names.
• There is no restriction on the depth of the data bank group tree. Simply separate each

level of the tree by a period (“.”). For example, “a.b.c” defines the group “c” which
belongs to “b” (its parent). The group “b”, in turn, belongs to “a”.

 34

HarmonincMean() Property [Double]
__

Returns the harmonic mean of a series.

Syntax:

ts.HarmonicMean

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.HarmonicMean ‘Display harmonic mean
End If

HasFootNotes() Property [Boolean]
__

This property returns “True” if any of the values in the time series object have footnotes.

Syntax:

ts.HasFootNotes

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

If X.HasFootNotes Then
 MsgBox Ucase(X.FullName) & “ has some footnotes.”
End If

End If

 35

Histogram() Method [Boolean]
__

Returns a table of ordinates that a useful in creating an “optimal” histogram plot for a
series. The routine returns the he optimal number of bins, the lower bound of the first
bin, and the optimal increment.

Syntax:

ts.Histogram(Bins(), BinCount, LowerBound, Increment)

The Histogram method has these parts:

Part Type Description

Bins() Long Array of long integers (will be re-dimensioned) containing
 the count for each collection bin in the histogram.

BinCount Long The number of bins in Bins() (returned).

LowerBound Double Lower bound for the first bin in Bins() (returned).

Increment Double Increment for each bin (returned).

Example

ReDim Bins(1) as Long
Dim BinCount as Long
Dim LowerBound as Double
Dim Increment as Double
Dim X as new dbTimeSeries

If X.Read(“example[ace]a”) Then

Call X.Histogram(Bins(), BinCount, LowerBound, Increment)
Msgbox BinCount ‘Displays 10
MsgBox Bins(BinCount) ‘Displays 2
MsgBox LowerBound ‘Displays -2
MsgBox Increment ‘Displays 0.5

End If

 36

Index() Method [dbTimeSeries]
__

Generates a series index (sequence starting with 1 and increasing by 1 each period).
The length of the index variable is determined entirely by the argument to index, which
must be positive.

Syntax

ts.Index(Length)

The Index method has these parts:

Part Type Description

Length Long Length of series (or number of observations)

Example

Dim X as New dbTimeSeries
X.Start = 1
X.Index(100)
X.Title = “Time Trend, starting with 1”
X.Save(“example[trend]index”)

 37

InternetAddress() Property [Attribute]
__

Dbank can update series from a remote site. The “InternetAddress” property sets or
returns the remote address of the update file (which must be in Dbank’s FREE format;
see the user guide for specifics). The remote address takes the following format:

Remote_Server_Name:Fully_Qualified_Name

For example, “dbank:\example\a.fre”, where “dbank” represents an alias for the actual
address of the server on your network or the internet.

Syntax:

ts.InternetAddress [= value]

The InternetAddress method has these parts:

Part Type Description

Value String Remote address of the update file.

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.InternetAddress = “dbank:/example/a.fre”
‘Unix FTP server.
X.Save

End If

 38

Interpolate() Method [dbTimeSeries]
__

This method expands a series to a higher frequency and then replaces the resulting
missing values in the series with estimated (or interpolated) values. Dbank supports
eleven distinct interpolation methods. For each of these methods, you can control
whether the known values of the series are positioned at the beginning, middle, or at the
end of the corresponding period in the resulting series (which has a higher frequency). If
you do not specify the interpolation method explicitly in the function call, Dbank uses a
cubic spline to interpolate. Please refer to Table 3 for a complete list of all the
interpolation method available in Dbank.

Syntax:

ts.Interpolate(TargetFrequency, [InterpolationMethod=tsSpline])

The Interpolate method has these parts:

Part Type Description

TargetFrequency String Required (or target) frequency for the new
 series.

InterpolationMethod Integer Interpolation method to use. Defaults to
 tsSpline.

Example:

Dim X as New dbTimeSeries
Dim Y as dbTimeSeries
If X.Read(“example[ace]a”) Then
 Set Y = X.Interpolate(“D”) ‘Interpolate to daily frequency

Y.Save(“example[ace]aD”) ‘Save the result
End If

 39

InterpolationMethod() Property [Enum: InterpolationMethods]
__

This method sets the default interpolation method to use when interpolation is required to
perform a time series operation. Dbank supports eleven distinct interpolation methods.
For each of these methods, you can control whether the known values of the series are
positioned at the beginning, middle, or at the end of the corresponding period in the
resulting series (which has a higher frequency). Please refer to Table 3 for a complete list
of all the interpolation method available in Dbank. Note that the default interpolation
method for all time series is cubic spline.

Syntax:

ts.InterpolationMethod [= IntMethod]

The InterpolationMethod method has these parts:

Part Type Description

IntMethod Integer Enum of type InterpolationMethods

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then
 ‘Alter the default interpolation method.

X.InterpolationMethod = tsRepeat
X.Save

End If

 40

IsAbsent() Property [Boolean]
__

Determines whether an observation index is outside the existing sample of the series.

Syntax:

ts.IsAbsent(DataIndex)

The IsAbsent property has these parts:

Part Type Description

DataIndex Variant String or value defining the index of the observation

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

MsgBox X.IsAbsent(0)
‘Displays True, because actual sample is from 1 to 100

 MsgBox X.IsAbsent(5) ‘Displays False
End If

Remarks

• When a string is used to index an observation, it must be in the format understood by

the time series. This format depends on the frequency of the time series, and, for
weekly and financial data, the date settings specified Control Panel. See Table 2,
Page 20, for specific details.

IsAConstant() Property [Boolean]
__

Returns “True” only if the series is a constant (i.e., all the observations have the same
value).

Syntax:

ts.IsAConstant

Example

Dim X as New dbTimeSeries
X.Nobs = 100
For j = 1 to 100: X.DataValue(j) = 1: Next j
MsgBox X.IsAConstant ‘Displays True

 41

IsALink() Property [Boolean]
__

Returns “True” only if the series is an alias or pointer to another series.

Syntax:

ts.IsALink()

Example

Dim X as New dbTimeSeries
X.Nobs = 100
X.FullName = “example[ace]a”
If X.IsALink() Then
 MsgBox Ucase(X.FullName) & “ is a link variable”
End If

IsAScalar() Property [Boolean]
__

Returns “True” only if the series is a scalar variable. To be a scalar variable, the series
must have a frequency of “N” (or none) and it must have only one observation. It must
also have a start date of 1.

Syntax:

ts.IsAScalar()

Example

Dim X as New dbTimeSeries
X.FullName = “example[ace]a”
X.Read
If X.IsAScalar() Then
 MsgBox Ucase(X.FullName) & “ is a scalar”
End If

 42

IsAMakeExpression() Property [Boolean]
__

Returns “True” only if the series is a make expression.

Syntax:

ts.IsAMakeExpression()

Example

Dim X as New dbTimeSeries
X.FullName = “example[ace]a”
If X.IsAMakeExpression() Then
 MsgBox Ucase(X.FullName) & “ is a make expression”
 MsgBox “The Make expression is “ & X.MakeString
End If

IsValidObs() Property [Boolean]
__

Tests whether an observation is valid (i.e., non-missing and within the current sample).

Syntax:

ts.IsValidObs (DataIndex)

The IsValidObs property has these parts:

Part Type Description

DataIndex Variant String or value defining the index of the observation

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

MsgBox X.IsValidObs(0)
 ‘Displays False, because sample is from 1 to 100

 MsgBox X.IsValidObs(5)
 ‘Displays True; actual value is 1.588419
End If

Remarks

• When a string is used to index an observation, it must be in the format understood by

the series. This format depends on the frequency of the series, and, for weekly and
financial data in particular, the date settings specified Control Panel. See Table 2, , for
specific details.

 43

JarqueBera() Property [Double]
__

Returns the Jarque-Bera test statistic, which tests for normality of a series.

Syntax:

ts.JarqueBera

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.JarqueBera ‘Display Jarque-Bera
End If

Key Property [Long]

__
Returns internal ID number of (which is automatically generated) of the series in the
databank. This name is unique for a given data bank, and is available ONLY if the series
already resides in a data bank. The time series key may be changed for the life-span of
the dbTimeSeries object. It cannot be updated in the database.

Syntax

ts.Key [= value]

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Key ‘Display internal key of the series
End If

Kurtosis Property() [Boolean]
__

Returns the kurtosis of a series.

Syntax:

ts.Kurtosis

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Kurtosis ‘Display kurtosis
End If

 44

Lag() Method [dbTimeSeries]
__

Shifts the start date of the series forward by a given number of periods.

Lag Method

Syntax:

ts.Lag(Amount)

The Lag method has these parts:

Part Type Description

[Amount=1] Long Number of periods to lag (which can be negative).

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

MsgBox X.Lag.StartDate
 ‘Displays 2, because sample was 1 to 100

 MsgBox X.Lag(-3).StartDate
 ‘Displays –1, because sample is was 2 to 101
End If

Remarks

• The number of observations in the series is not affected by the lag operation. Only

the start date (and end date) of the series changes.

LastDay Property() [Long]
__

Returns the last day of a series. This property affects the starting date of weekly and
financial (5-day, 6-day, and 7-day) series. The frequency of the series must be set before
using the LastDay method.

Syntax:

ts.LastDay

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

Msgbox X.LastDay ‘Displays 15
End If

 45

LastPeriod() Property [Long]
__

Returns the last period (month, quarter, half-year) of a series. The frequency of the series
must be set before using the LastPeriod method.

Syntax:

ts.LastPeriod

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.LastPeriod ‘Displays 1 (1st quarter, 1991)
End If

LastValidIndex() Property [Long]
__

Returns an integer that indicates the position of the last non-missing (or valid)
observation in a series.

Syntax:

ts.LastValidIndex

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

For j = X.FirstValidIndex to X.LastValidIndex
If X.IsValidObs(j) Then

 X.DataValue(j) = Log(X.DataValue(j))
 ‘Convert series to logs

End If
Next j
X.Save ‘Update the series

End If

 46

LastYear() Property [Long]
__

Returns the last year of a series. The frequency of the series must be set before using the
LastYear method.

Syntax:

ts.LastYear

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.LastYear ‘Displays 1991
End If

Lead() Method [Long]
__

Shifts the start date of the series backward by a given number of periods.

Syntax:

ts.Lead(Amount)

The Lead method has these parts:

Part Type Description

[Amount=1] Long Number of periods to lag (can be negative).

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

MsgBox X.Lead.StartDate
 ‘Displays 0, because sample was 1 to 100

 MsgBox X.Lead(3).StartDate
 ‘Displays 3, because sample was 0 to 99
End If

Remarks

• The number of observations in the series is not affected by the lead operation. Only

the start date (and end date) of the series changes.

 47

LinkName() Method [String]
__

Provided the series being referred to is a link variable, this method returns the fully
qualified name of the series that the link variable points to. Note that link variables can
also point to links. As such, the method accepts a “Recursive” parameter to allow you to
determine the physical series that the link chain points to.

Syntax:

ts.LinkName ([Recursive=True])

The LinkName property has these parts:

Part Type Description

[Recursive] Boolean If “True”, the method “walks” thru the link chain to return
 the fully qualified name of the last series in the chain (a
 proper time series).

Example

Dim X as New dbTimeSeries
X.Name = “example[ace]a”
If X.IsALink() Then
 MsgBox “Actual series: “ & X.LinkName()
End If

 48

LinkTo() Method [Boolean]
__

Creates a pointer (or new name/alias) to an existing series in a data bank. Pointers to
pointers are allowed.

Syntax:

ts.LinkTo [= value]

The LinkTo property has these parts:

Part Type Description

[Value] String Name/alias for the series (can include a group
 specification).

Example

Dim X as New dbTimeSeries
X.Name = “example[ace]a”
If X.LinkTo(“example[newname]link_to_a_in_ace”) Then
 MsgBox “Link to [ace]a created successfully”
End If

LongName() Property [String]
__

Sets or returns the “long name” a series. The long name can be any string that might
provide a more descriptive name for the series.

Syntax:

ts.LongName [= value]

The LongName property has these parts:

Part Type Description

[Value] String Descriptive name of the series.

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.LongName = ”100 Random Numbers”
MsgBox X.LongName ‘Display the long name
X.Save ‘Update the series

End If

 49

Magnitude() Property [Long]
__

Sets or returns the magnitude of a series (in terms of powers of 10). In the current
version of Dbank, this property does not have any effect on the manner in which a series
is processed internally. You must enter the actual value of the series when creating a
series.

Syntax:

ts.Magnitude [= value]

The Magnitude property has these parts:

Part Type Description

[Value] String Descriptive name of the series.

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.Magnitude = 3 Random Numbers”
MsgBox X.Magnitude ‘Display the long name
X.Save ‘Update the series

End If

 50

MakeAttributes() Property [Long Integer]
__

Returns a long integer that reflects the current settings for computing the make equation
attached to the series. This property can also be used to set these attributes. However,
care must be taken to ensure that the proper values are used to set the attributes.

Syntax:

ts.MakeAttributes [= value]

The MakeAttributes property has these parts:

Part Type Description

[Value] Long Integer reflect the current make attribute settings.

Example

Dim X as New dbTimeSeries
Dim mA as Long
If X.Read(“example[ace]a”) Then
 mA = X.MakeAttributes
 If (mA And tsMakeRefreshORead) = tsMakeRefreshOnRead Then
 MsgBox “Series make equation will be updated on read.”
 End If
End If

Attribute Value Description

tsMakeIgnoreMissingSeries 2

Series Make will not flag a missing series as an
error. The equation will be computed assuming
that the series is all 0’s or all 1’s depending on
the operation performed (e.g., +, -).

 tsMakeSpreadsheetMode 4

Series Make will convert any missing values
encountered during a make operation to either 0
or 1 depending on the operation performed (e.g.,
+, -).

 tsMakeMergeMode 16 Merge (i.e., do not overwrite) the result into the
existing series.

tsMakeTrimMode 32 Trim missing values at the beginning or end of
the series before saving the result.

 tsMakeRefreshOnRead 64

ReMake the series before returning the result of
the dbTimeSeries Read method. This feature
ensures that the series reflects the impact of all
edits (and is often called “dynamic” update).

tsMakeDefaultMode 0 None of the above.

 51

MakeIgnoreMissingSeries() Property [Boolean]
__

Sets or returns the current setting for the “IgnoreMissingSeries” attribute of a series when
it comes to computing any make equation attached to the particular series. If “True”,
Series Make will “ignore” all the missing series in a make expression by setting its value
to 0 or 1 depending on the current make operation. As such, Series Make will not fail if
it encounters a missing series in the make expression. The default setting for this
property is “False”.

Syntax:

ts.MakeIgnoreMissingSeries [= value]

The MakeIgnoreMissingSeries property has these parts:

Part Type Description

[Value] Boolean Controls the “IgnoreMissingSeries” attribute of a series.

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.MakeIgnoreMissingSeries = True
X.Save ‘Update the series

End If

 52

MakeMergeMode() Property [Boolean]
__

Sets or returns the current setting for the “MergeMode” attribute of a series when it
comes to computing any make equation attached to the particular series. If “True”, Series
Make will merge its result into the existing values of the series. In merge mode, a
missing value will not overwrite a non-missing value. Also, the series will be expanded
to accommodate a greater number of observations if and when necessary. The default
setting for this method is “False”.

Syntax:

ts.MakeMergeMode [= value]

The MakeMergeMode property has these parts:

Part Type Description

[Value] Boolean Controls the “MergeMode” attribute of a series.

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.MakeMergeMode = True
X.Save ‘Update the series

End If

 53

MakeRefreshOnRead() Property [Boolean]
__

Sets or returns the current setting for the “RefreshOnRead” attribute of a series. If “True”,
the Read() method of dbTimeSeries (see below) will calculate any make expression
attached to the series (in a recursive fashion) before returning the result of the Read
operation to the caller. As a result, the series will always reflect the results of any
interim updates to raw data in the system since the series was last read.

Syntax:

ts.MakeRefreshOnRead[= value]

The MakeRefreshOnRead property has these parts:

Part Type Description

[Value] Boolean Controls the “RefreshOnRead” attribute of a series.

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.MakeRefreshOnRead = True
X.Save ‘Update the series

End If

 54

MakeSpreadSheetMode() Property [Boolean]
__

Sets or returns the current setting for the “SpreadSheetMode” attribute of a series when it
comes to computing any make equation attached to the particular series. If “True”, Series
Make will “ignore” all the missing values encountered in a make expression by setting
the missing value to 0 or 1 depending on the current make operation. As such, Series
Make will not propagate missing values during a make operation. The default setting
for this property is “False”.

Syntax:

ts.MakeSpreadSheetMode [= value]

The MakeSpreadSheetMode property has these parts:

Part Type Description

[Value] Boolean Controls the “SpreadSheetMode” attribute of a series.

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.MakeSpreadSheetMode = True
X.Save ‘Update the series

End If

 55

MakeString() Property
__

Sets or returns the algebraic expression used to compute (or derive) the series from other
series or statistical functions supported by Dbank’s “Series Make”.

Syntax:

ts.MakeString [= value]

The MakeString property has these parts:

Part Type Description

[Value] String Any valid Dbank Make expression (see
 Dbank User Guide).

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.MakeString = “b+c+d+[ace]e” ‘(syntax is not checked)
MsgBox X.MakeString ‘Display the expression
X.Save ‘Update the series

End If

Remarks

• No computation is performed by this property. It changes the make expression

without actually computing the result.
• The make expression is not parsed until it is computed using the ReMake method.

Thus invalid expressions are allowed.

 56

MakeTrimMode() Property [Boolean]
__

Sets or returns the current setting for the “TrimMode” attribute of a series when it comes
to computing any make equation attached to the particular series. If “True”, Series Make
will remove any trailing or leading values of a series before returning the result to the
caller. The default setting for this property is “False”.

Syntax:

ts.MakeTrimMode [= value]

The MakeTrimMode property has these parts:

Part Type Description

[Value] Boolean Controls the “TrimMode” attribute of a series.

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.MakeTrimMode = True
X.Save ‘Update the series

End If

Max Property() [Double]
__

Returns the maximum observation in a series.

Syntax:

ts.Max

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Max ‘Display maximum
End If

 57

Mean() Property [Double]
__

Returns the arithmetic mean (average) of a series.

Syntax:

ts.Mean

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Mean ‘Display mean
End If

MeanAbsoluteDeviation() Property [Double]
__

Returns the arithmetic mean (average) of the absolute deviations from the mean.

Syntax:

ts.MeanAbsoluteDeviation

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.MeanAbsoluteDeviation ‘Display mean absolute
 ‘deviation

End If

Median() Property [Double]
__

Returns the median of a series.

Syntax:

ts.Median

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Median ‘Display median
End If

 58

MedianAbsDev Property [Double]
__

Returns the median absolute deviation of a series.

Syntax:

ts.MedianAbsDev

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.MedianAbsDev
 ‘Display median absolute deviation

End If

Memo() Property [String]
__

Sets or returns the memo property of the series. This property can be any text of any
length.

Syntax:

ts.Memo [= value]

The Memo property has these parts

Part Type Description

[Value] String Any valid string.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Memo ‘Display current memo item
 ‘Now change it…

X.Memo = “Hello, World. This is my first memo…”
X.Save

End If

 59

Merge() Method [dbTimeSeries]
__

Updates the series using another series of the same frequency. Optionally, missing
values in the updating series can be ignored.

Syntax:

ts.Merge(y,[IgnoreMissingValues])

The Merge property has these parts

Part Type Description

y Object Dbank time series object.

[IgnoreMissingValues=True] Boolean Switch that controls whether missing values
 in the “y” series are ignored.

Example

Dim X as New dbTimeSeries
Dim Y as New dbTimeSeries
Dim j as Long
Dim Ok as Boolean
Ok = X.Read(“example[first.bp]bpeir”)
Ok = Ok And Y.Read(“example[first.bp]bpe”)
 ‘Line up the observations
If Ok Then

X.Merge(Y,False)
X.Save(“example[ace]merge”)

End If

Min() Property [Double]
__

Returns the minimum value of a series.

Syntax

ts.Min

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Min ‘Display minimum value
End If

 60

MissingCount() Property [Long]
__

Returns the number of missing values in the series.

Syntax:

ts.MissingCount

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.MissingCount ‘Displays 0
X.DataValue(1) = X.MissingValue
MsgBox X.MissingCount ‘Displays 1

End If

MissingValue() Property [Double]
__

Returns the actual value used to represent missing values. Dbank presently uses
IEEE +INF (positive infinity).

Syntax:

ts.MissingValue

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.MissingValue ‘Displays +1#INF
If X.DataValue(1) = X.MissingValue Then
 MsgBox “First observation is missing.”
End If

End If

 61

MostRecentRevisionTime() Property [Double]
__

Returns the last time that the series was last revised. The return value is a double in
Microsoft date serial format. The integer part implies the year, month, and day that the
series was created; the decimal part implies an hour and second. This method is property
is different from the “Revised” method in that it obtained this value by re-reading the
appropriate field from the database in which the series resides. This method returns zero
if the series does not exist in any database.

Syntax:

ts.MostRecentRevisionTime

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.MostRecentRevisionTime
End If

Move() Method [Boolean]
__

Moves or renames an existing series in a database. It returns “True” if successful. Note
that this method cannot be used to move a series to another database. You must use the
Copy() and Delete() methods to achieve this.

Syntax:

Ts.Move(NewLocation)

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

If X.Move(“[temp]g”) Then MsgBox “Move successful”
End If

 62

MoveToExcel() Method [Boolean]
__

Copies a series to an Excel spreadsheet (which needs to be open before the method is
called).

Syntax:

ts.MoveToExcel(WorkSheet, StartingRowIndex, ColIndex, [DateTitle])

The MoveToExcel method has these parts:

Part Type Description

WorkSheet Object Object containing an open Excel Worksheet

StartingRowIndex Long Starting row in the Excel spreadsheet

ColIndex Long Starting column in the Excel spreadsheet

[DateTitle] String Optional title for the column to contain the date strings.
 When absent, the date string column is suppressed.

Example

Dim xlApp As Object
Dim xlBook As Object
Dim xlSheet As Object
Dim xlsRange As Object
Set xlApp = CreateObject("Excel.Application")
Set xlBook = xlApp.Workbooks.Add
Set xlSheet = xlBook.WorkSheets(1)
Dim X as new dbTimeSeries
If X.Read(“example[ace]a”) Then

X.MoveToExcel(xlSheet,1,1,”Date”)
End If
xlBook.SaveAs FileName$
xlApp.Quit
Set xlSheet = Nothing
Set xlBook = Nothing
Set xlApp = Nothing

 63

MsDateValue() Method [Double]
__

Maps any Dbank date serial to an equivalent Microsoft date serial, given the series
attributes.

Syntax:

ts.MsDateValue (DateIndex)

The MsDateValue method has these parts:

Part Type Description

[DataIndex] Variant String or value defining the index of the observation.
 Default value os 1.

Example

Dim X as new dbTimeSeries
If X.Read(“example[first.bp]bpier”) Then

MsgBox Month(X.MsDateValue(5))
‘Returns 1 if X.ConversionMethod = tsFirst
‘Returns 2 if X.ConversionMethod = tsAverage
‘Returns 3 if X.ConversionMethod = tsLast

End If

Remarks

When a string is used to index an observation, it must be in the format understood by the
series. This format depends on the frequency of the time series, and, for financial and
weekly data, the active dates format settings for Windows (see Regional Settings in
Control Panel). See , Table 2 for more information.

 64

MyData() Method [Variant]
__

Returns a variant that is a pointer to a double array containing all the observations in the
series.

Syntax:

ts.MyData

Example

Dim X as new dbTimeSeries
Dim Data as Variant
If X.Read(“example[ace]a”) Then

Data = X.MyData
For j = 1 to X.Nobs

MsgBox Data(j)
‘This is much faster than DataValue Method
‘But also far less flexible

Next j
End If

MyDateSerials() Method [Variant]
__

Returns a variant/pointer to a string array containing all the date serials of the series in
Dbank’s date serial format.

Syntax:

ts.MyDateSerials

Example

Dim X as new dbTimeSeries
Dim DateSerials as Variant
If X.Read(“example[ace]a”) Then

DateSerials = X.MyDateSerials
For j = 1 to X.Nobs

MsgBox DateSerials(j)
Next j

End If

 65

Name() Property [String]
__

Sets or returns the short name of the series. The series’ “short name” is the name that
appears after the group specification of the full name (i.e., all the characters to the right of
“]”).

Syntax:

ts.Name

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Name ‘Displays bpeir
X.Name = “NewName”
MsgBox “New time series name is:” & X.Name
X.Save
‘ Save the series to “example[first.bp]newname”

End If

Nobs() Property [Long]
__

Sets or returns the number of observations in a series.

Syntax

ts.Nobs [= value]

The Nobs property has these parts

Part Type Description

[Value] Long Any positive integer.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Nobs ‘Displays 89
‘Allocate another 11 spaces existing data
‘remains intact
X.Nobs = 100

End If

 66

ObsFootNoteText() Property
__

Sets or returns an observation footnote for any observation in the series. Dbank supports
multiple footnote entries for each observation.

Syntax

ts.ObsFootNoteText(DateSerial, CodeName) [= value]

The ObsFootNoteText property has these parts

Part Type Description

DataIndex Variant String or value defining the index of the observation

 [Value] Variant Footnote description of any length (string).

Example

Dim X as new dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.ObsFootNoteText(“1977:1”,”MyFirstFootNote”) _
= “Observation is estimated (by linear interpolation).”

End If

 67

ObsIndex() Method [Long]
__

Returns the observation index (long) of any value in a series. Returns –1 if the value
cannot be located in the series. Note that it will return the index of the first observation
that equals the value being searched for. You may start the search from the end of the
series, and work backwards.

Syntax:

ts.ObsIndex(Value,[StartFromTop])

The ObsIndex method has these parts:

Part Type Description

Value Double Numerical value to search for.

[StartFromTop] Boolean Controls the starting point of the search.

Example

‘Determine the index of the minimum value of the series

Dim X as new dbTimeSeries
If X.Read(“example[ace]a”) Then
 MsgBox “Minimum value occurs at “ _
 & X.DateSerial(X.ObsIndex(X.Min))
End if

 68

Offset() Method [Long]
__

Returns the offset needed to match up observations from different series (of the same
frequency) in a rectangular array.

Syntax:

ts.Offset(y)

The Offset method has these parts:

Part Type Description

y Object Dbank time series object.

Example

Dim X as New dbTimeSeries
Dim Y as New dbTimeSeries
Dim j as Long
Dim o as Long
Dim Ok as Boolean
Ok = X.Read(“example[first.bp]bpeir”)
Ok = Ok And Y.Read(“example[first.bp]bpe”)
o = X.Offset(y)
‘Line up the observations
If Ok Then
 For j = 1 to X.Nobs

If (j+o) > 0 Then
MsgBox X.DataValue(j) & “ aligns with “ & MsgBox _
Y.DataValue(j+o)

End if
 Next j
End If

 69

Op() Method [dbTimeSeries]
__

Allows you to do basic arithmetic operations on series with the same frequency. Please
note that Dbank’s dbTSMake and dbMake classes obviate the need for this method.

Syntax

ts.Op(y, Operator)

The Op method has these parts:

Part Type Description

y Object Dbank time series object.

Operator Integer Dbank time series operator code (Enum)

The following operators are supported:

Operator CodeName & Value Meaning
Add tsAdd = 1 Ts+y

Subtract tsSubtract = 2 Ts-y
Multiply tsMultiply = 3 Ts*y
Divide tsDivide = 4 Ts/y
Power tsPower = 5 Ts^y

IntegerDivide tsIntegerDivide = 6
Mod tsMod = 7 Ts Mod y
And tsAnd = 8 Ts AND y
Xor tsXor = 9 Ts Xor y

Equal tsEqual = 10 Ts=y
Eqv tsEqv = 11 Ts Eqv y

Greater tsGreater = 12 Ts > y
Less tsLess = 13 Ts < y

GreaterOrEqual tsGreaterOrEqual = 14 Ts ≥y
LessOrEqual tsLessOrEqual = 15 Ts ≤y

Or tsOr = 16 Ts Or y
NotEqual tsNotEqual = 17 Ts ≠y

Remainder tsRemainder = 18 Ts \ y
Imp tsImp = 19 Ts Imp y

DotProduct tsDotProduct = 20 Ts’y
Max tsMax = 21 Max(Ts,y)
Min tsMin = 22 Min(Ts,y)

 70

OriginalHeader() Property [String]
__

Sets or returns the original header attribute of the series. This attribute is for capturing
the original header that came with the time series before (perhaps) it was converted to
Dbank format.

Syntax:

ts.OriginalHeader [= value]

The OriginalHeader property has these parts

Part Type Description

[Value] String Any valid string.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.OriginalHeader ‘Display original series header
 ‘Now change it…

X.OriginalHeader = “New series descriptor.”
X.Save ‘Update it

End If

 71

OriginalStartDate() [Variant]
__

Dbank allows the caller to change the start date of a series. This method retrieves the
original start date of the series attached to the series when it was saved to the database for
the first time.

Syntax:

ts.OriginalStartDate

Example

Dim X as new dbTimeSeries
X.Nobs = 100
X.Frequency = “M”
X.Startdate = “1971:8”
X.Save(“example[ace]start”)
X.Read
X.Startdate = “1979:1”
MsgBox X.OriginalStartDate ‘Returns date serial for 1971:8,
 ‘not 1979:1 in particular

Period() Method [Long]
__

Returns the period (month, quarter, or half-year) that an observation belongs to.

Syntax:

ts.Period([DateSerial])

The Period property has these parts:

Part Type Description

DateSerial Variant Dbank date string. Default setting is one.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Period(“1971:3”) ‘Displays 3
MsgBox X.Period(3) ‘Displays 3

End If

Remarks

See Table 2 for more information on setting Dbank date serials.

 72

Periodicity() Property [Long]
__

Returns an integer representing the periodicity of the series (if known). The periodicity
value is dependent entirely on the frequency of the series.

Syntax:

ts.Periodicity

Example

Dim X as new dbTimeSeries
X.Frequency = “A”
MsgBox X.Periodicity ‘Returns 1
X.Frequency = “Q”
MsgBox X.Periodicity ‘Returns 4
X.Frequency = “H”
MsgBox X.Periodicity ‘Returns 2
X.Frequency = “M”
MsgBox X.Periodicity ‘Returns 12

‘Function returns –1 for all other frequencies

Plot() Method [Boolean]
__

Invokes Dbank’s series plotter, which allows you to plot series against time. Dbank’s
Plot form is invoked in a non-modal fashion by default.

Syntax:

ts.Plot([Optional LoadAsModal=False])

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

If X.Plot Then
 MsgBox “Plot operation successful.”
End if

End If

 73

PopulationVar() Method [Double]
__

Returns the population variance of a series.

Syntax:

ts.PopulationVar(LagOrder)

The PopulationVar property has these parts:

Part Type Description

[LagOrder] Long Any positive integer.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.PopulationVar ‘Display population variance
End If

Precision() Property [Enum, tsPrecision]
__

Sets or returns the precision with which the series (i.e., its observations) is saved in the
data bank. Two settings are presently supported: (a) single (4-bytes) and (b) double (8-
bytes). Only double precision format is support for SQL databases.

Syntax:

ts.Precision [= value]

The Precision property has these parts:

Part Type Description

[Value] Long tsSingle (0) or tsDouble (1)

Example

Dim X as new dbTimeSeries
If X.Read(“example[ace]a”) Then

X.Precision = tsSingle
X.Save
X.Precision = tsDouble
X.Save

End If

 74

QStatistic() Method [Double]
__

Returns the Box-Ljung Q statistic of the series for a given number of lags.

Syntax:

ts.QStatistic(LagOrder)

The QStatistic property has these parts:

Part Type Description

LagOrder Long Any positive integer.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Qstatistic(2) ‘Display Qstatistic at 2 lags
End If

QuartileRange() Method [Double]
__

Returns the “quartile range” of a series (third quartile less first quartile).

Syntax:

ts.QuartileRange

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.QuartileRange ‘Display quartile range
End If

 75

Range() Property [Double]
__

Returns the range of a series.

Syntax:

ts.Range

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Range ‘Display range
End If

Read() Method [Boolean]
__

Reads series in a data bank to a time series object in memory. Both the data and the
attributes of the series are read.

Syntax

ts.Read(FullTimeSeriesName,[Quiet],[SuppressReMake])

The Read method has these parts:

Part Type Description

FullTimeSeriesName String Fully qualified Dbank time series name.

[Quiet] Boolean Suppresses error messages when set to true.

[SuppressReMake] Boolean Suppresses remake on read when set to true.

Return Code

Returns “True” if successful, “False” otherwise.

 76

ReMake() Method [Boolean]
__

This method recalculates the observations in a series according the setting of its make
string (see series MakeString property).

Syntax:

ts.ReMake ([SmartReMake], [DontTrim], [OverWriteTitle])

The ReMake method has these parts:

Part Type Description (if True)

[SmartReMake=False] Boolean Recompute the series only if right-hand
 side time series are more recent that series
 itself.

[DontTrim=False] Boolean Determines whether leading and trailing
 missing values are removed from
 the resulting series.

[OverWriteTitle=False] Boolean Determines whether the method overwrites
 the series title with the series’make
 expression.

Example

Dim X as new dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.SeriesMake = “holtwinters([first]bpeir,1997:1)”
X.ReMake(True,False,False)
X.Save(“example[ace]holt_bpeir”)

End If

 77

RemoteTimeStamp() Property [Double]
__

Returns the last known time stamp of the remote series that is dedicated to updating the
time series at the client. It is the responsibility of the remote data provider to create this
time stamp at the server. Dbank obtains this time stamp when it retrieves the update field
from the remote server, and saves it to the series saved at the client. Dbank uses this field
to determine whether it is necessary to update the client. The return value is a real value
in Microsoft’s date serial format. The integer part implies the year, month, and day that
the series was created; the fractional part implies an hour and second.

Syntax:

ts.RemoteTimeStamp

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox Format(X.RemoteTimeStamp,”dddddd”)
‘Remote update date using Windows long-date format

End If

RemoteUpDateTimeStamp() Property [Double]
__

Returns the actual date and time that the series was updated from the remote server. Note
that this can be different from the time stamp returned by the
“RemoteTimeStampMethod”. The return value is a real value in Microsoft’s date serial
format. The integer part implies the year, month, and day that the series was created; the
fractional part implies an hour and second.

Syntax:

ts.RemoteUpdateTimeStamp

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox Format(X.RemoteUpdateTimeStamp,”dddddd”)
‘Remote update date using Windows long-date format

End If

 78

RemoveScale() Property [Boolean]
__

This method removes the optimal scaling factor originally applied to the values in a
series. It multiplies each value in the series by the optimal scaling factor returned by
“ScalingFactor”. This method should only be used if the data has been already been
scaled.

Syntax:

ts.RemoveScale

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then
 X.ScaleData ‘Scale the data value

X.RemoveScale ‘Remove the scale
X.Save
‘Remote update date using Windows long-date format

End If

Rename() Method [Boolean]
__

Renames an existing series in a data bank. This method cannot be used to move a series
to another data bank.

Syntax:

ts.Rename (NewSeriesName)

The Rename method has these parts:

Part Type Description

[NewSeriesName] String Fully qualified Dbank series name

Example

Dim X as new dbTimeSeries
X.FullName = “example[ace]a”
If X.Rename(“example[ace]a_newname”) Then

MsgBox “Series renamed successfully!”
End if

 79

ReplaceMissing() Method [dbTimeSeries]
__

Replaces all missing values in a series using any of the interpolation methods supported
in Dbank.

Syntax:

ts.ReplaceMissing(Type, [StartFromBottom=False])

The ReplaceMissing method has these parts:

Part Type Description

[Type=tsCubicSpline] Integer Valid Interpolation Method

[StartFromBottom] Boolean Start interpolation from the beginning of the

vector.

Example

Dim X as new dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.DataValue(10) = X.MissingValue
X.ReplaceMissing(tsLinear)
X.Save(“example[first.bp]no_missing”)

End If

 80

ReplaceMyData() Method [dbTimeSeries]
__

Rapidly replaces all the data values in a time series by moving the contents of a double
array supplied by the user into the series object. It is used internally within Dbank to
speed up certain numerical operations in Series Make, where reliance on DataValue() to
update the individual values would result in a significant loss of performance. Note that
you can control the starting position of the revised data by specifying an offset. If
positive, Dbank will replace the internal data starting from the supplied offset. This
method is typically used in conjunction with the CopyMyData() method.

Syntax:

ts.ReplaceMyData(DataArray() as Double, Nobs, Offset=0],[HasMoreThanOneIndex=False])

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then
 ReDim DataValues(1 to X.Nobs)
 Call X.CopyMyData(DataValues(),X.Nobs)
 For j = 1 to X.Nobs : DataValue(j) = DataValues(j) /100
 Call X.ReplaceMyData(DataValues(),X.Nobs)
 ‘X has been scaled downwards by 100!
End If

Revised() Property [Double]
__

Returns the time that the series was last revised. The return value is a double in
Microsoft date serial format. The integer part implies the year, month, and day that the
series was created; the decimal part implies an hour and second.

Syntax:

ts.Revised

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox Format(X.Revised,”dddddd”)
 ‘Display using Windows long-date format
End If

 81

Save() Method [Boolean]
__

Save the current settings of the series to a data bank. The location is determined entirely
by the full name of the series. However, specifying an optional argument in the Save
method can override this behavior. The caller can also prevent the save method from
accidently overwriting an existing series by setting the optional “AllowedToOverWrite”
parameter to “False”.

Syntax

ts.Save (FullTimeSeriesName,[AllowedToOverWrite=True], [OnlySaveAttributes=False])

The Save method has these parts:

Part Type Description

[FullTimeSeriesName] String Fully qualified Dbank time series name

[AllowedToOverWrite=True] Boolean Determines whether one can overwrite existing
 series. Default setting is “True”.

[OnlySaveAttributes=False] Boolean If “True”, Saves only the non-data
 components (or attributes of a series).

ScaleData() Property [Boolean]
__

This method scales the values in a series using the optimal scaling factor. It divides each
value in the series by the optimal scaling factor returned by the “ScalingFactor” method,
which ensures that subsequent numerical operations loose the least significant digits.

Syntax:

ts.RemoveScale

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then
 X.ScaleData ‘Scale the data value

X.RemoveScale ‘Remove the scale
X.Save
‘Remote update date using Windows long-date format

End If

 82

ScaledMedianAbsoluteDev() Method [Double]
__
Returns the scaled median absolute deviation of a series.

Syntax:

ts.ScaledMedianAbsoluteDev

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.ScaledMedianAbsoluteDev ‘Display it
End If

ScalingFactor() Method [Double]
__
Returns the optimal scaling factor for the series. The optimal scaling factor can be used
to rescale the data so that subsequent numerical operations result in a minimum loss of
significant digits.

Syntax:

ts.ScalingFactor

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.ScalingFactor ‘Display it
End If

 83

sConversionMethod() Property [String]
__

Sets the conversion method to be used by default when converting a series to any
frequency that would result in a smaller number of observations (i.e., consolidation
occurs). This property differs from the “ConversionMethod” property explained above
in that the caller can specify the default conversion method using its actual name (a
string) rather than an enum constant.

Syntax:

ts.sConversionMethod = ConversionMethod

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.sConversionMethod = “Last”
X.Save

End If

Server() Property [String]
__

Sets or returns the name of the SQL server to which the series will be saved.

Syntax:

ts.ServerName = [ServerName]

Example

Dim X as New dbTimeSeries
If X.Read(“<tsOrion>example[ace]a”) Then

MsgBox Ucase(X.ServerName) ‘Returns “<tsOrion>”
X.Save

End If

 84

ShowAcf() Method [Boolean]
__

Invokes Dbank’s series correlogram form, showing the auto and partia l autocorrelations
of the series. Dbank’s Acf form is invoked in a non-modal fashion by default.

Syntax:

ts.ShowAcf([Optional LoadAsModal=False])

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

If X.ShowAcf Then
 MsgBox “Show Acf form operation successful.”
End if

End If

ShowErrorMessages() Property [Boolean]
__

Allows the caller to control whether the dbTimeSeries method displays error messages
(i.e., loads a message box with a description of the error encountered) on the caller’s
screen.

Syntax:

ts.ShowErrorMessages(Setting)

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

If X.ShowErrorMessages Then
 MsgBox “Dbank will display all error messages in MsgBox.”
End if

End If

 85

SignificantDigits() [Long]
__

Sets or returns the number of significant digits to display whenever a series is shown in
Dbank’s viewer. The numerical values of the data are unaffected.

Syntax:

ts.SignificantDigits [= value]

The SignificantDigits method has these parts:

Part Type Description

Value Long Number of significant digits

Example

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

X.SignificantDigits = 2
X.Save(“example[ace]a_s2”)

End If

Skewness() Property [Double]
__
Returns the skewness coefficient of a series.

Syntax:

ts.Skewness

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Skewness ‘Display skewness coefficient
End If

 86

Smooth() Method [dbTimeSeries]
__

Fits a smooth line to the series using Friedman’s super smoother. The original data is
replaced with the smoothed values. Warning: smooth is not a centered moving average.

Syntax:

ts.Smooth

Example

Dim X as new dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.Smooth
X.Save(“example[first.bp]smooth”)

End If

Sort() Method [dbTimeSeries]
__

Sorts the data in the series from highest to lowest. The original data is replaced with the
sorted values.

Syntax:

ts.Sort

Example

Dim X as new dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.Sort
X.Save(“example[first.bp]sorted”)

End If

 87

StartDate() Property [Variant]
__

Sets or returns the starting date of the series. Method always returns a Dbank date serial
(long).

Syntax:

ts.StartDate [= value]

The StartDate method has these parts:

Part Type Description

Value Variant Dbank date serial or string

Example

Dim X as new dbTimeSeries
X.Nobs = 100
X.Frequency = “M”
X.Startdate = “1971:8”
X.Save

StdDev() Property [Double]
__

Returns the sample standard deviation of a series.

Syntax:

ts.StdDev

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.StdDev ‘Display standard deviation
End If

 88

Sum() Property [Double]
__

Returns the sum of the values in a series.

Syntax:

ts.Sum

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Sum ‘Display sum
End If

SummaryStatistics() Method [Boolean]
__

Invokes Dbank’s summary statistics form, which provides a graphical view of
approximately 15 summary statistics on the series. Dbank’s SummaryStatistics form is
invoked in a non-modal fashion by default.

Syntax:

ts.SummaryStatistics([Optional LoadAsModal=False])

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

If X.SummaryStatistics Then
 MsgBox “SummaryStatistics form invoked successfully.”
End if

End If

 89

Take() Method [Boolean]
__

Drops (strips) all observations in a series before a given date/index.

Syntax:

ts.Take(Index)

The Take method has these parts:

Part Type Description

Index Variant Observation index.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.Take(“1975:1”) ‘Removes all data before 1975:1
X.Save

End If

Remarks

When a string is used to index an observation, it must be in the format understood by the
time series. This format depends on the frequency of the series, and, for financial and
weekly data in particular, the active date format settings for Windows (see Regional
Settings in Control Panel). See , Table 2 for more information.

ThirdQuartile() Method [Double]
__

Returns the third quartile of the series.

Syntax:

ts.ThirdQuartile

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.ThirdQuartile ‘Display third quartile
End If

 90

Title() Property [String]
__

Sets or returns a descriptive string that typically describes the contents of the series.

Syntax:

ts.Title [= value]

The Title property has these parts

Part Type Description

[Value] String Any valid string.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Title ‘Display current series descriptor
 ‘Now change it…

X.Title = “New series descriptor.”
X.Save ‘Update it

End If

TrendLine() Method [dbTimeSeries]
__

Fits a trend line to the series using Ordinary Least Squares. The original data is replaced
with the fitted trend.

Syntax:

ts.TrendLine

Example

Dim X as new dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.TrendLine
X.Save(“example[first.bp]trend”)

End If

 91

Trim() Method [dbTimeSeries]
__

Trims (removes) observations from the beginning and end of a series.

Syntax:

ts.Trim([FrontAmount], [BackAmount])

The Trim method has these parts:

Part Type Description

[FrontAmount] Variant Amount to remove from the beginning of the series.
 Removes leading missing values if omitted.

[BackAmount] Variant Amount to remove from the end of the series.
 Removes trailing missing values if omitted.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

X.Trim(5,10) ‘Remove first 5 & last 10 observations
End If

UnitRootStatistics() Method [Boolean]
__

Invokes Dbank’s unit root statistics form, which provides a graphical view of some
standard unit root tests for time series data. Dbank’s UnitRootStatistics form is invoked
in a non-modal fashion by default.

Syntax:

ts.UnitRootStatistics([Optional LoadAsModal=False])

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

If X.UnitRootStatistics Then
 MsgBox “UnitRootStatistics form invoked successfully.”
End if

End If

 92

Units() Property [String]
__

Sets or returns a descriptive, arbitrary string describing the units of measurement of the
series.

Syntax:

ts.Units [= value]

The Units property has these parts

Part Type Description

[Value] String Any valid string.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Units ‘Display current units of measurement
 ‘Now change it…

X.Memo = “Billions.”
X.Save ‘Update it

End If

UpdatedBy() Property [String]
__

Returns the name of the account that last updated the time series to the databank. This
field is set when the series is read from the database. As such, it will be inaccurate if
another user updated the series since it was read into the dbTimeSeries object.

Syntax:

ts.UpdatedBy()

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.UpdatedBy
End If

 93

ValidCount() Method [Long]
__

Returns the number of non-missing (or valid) observations in a series

Syntax:

ts.ValidCount

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.ValidCount
 ‘Display number of valid observations

End If

Var() Method [Double]
__

Returns the sample variance of a series.

Syntax:

ts.Var

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Var ‘Display sample variance
MsgBox X.Var*(1-(1/X.Nobs))
 ‘Display estimate of pop. variance

End If

View() Method [Boolean]
__

Invokes Dbank’s series’ viewer, which provides a graphical view of a series and its main
attributes. Dbank’s View form is invoked in a non-modal fashion by default.

Syntax:

ts.View([Optional LoadAsModal=False])

Dim X as New dbTimeSeries
If X.Read(“example[ace]a”) Then

If X.View Then
 MsgBox “UnitRootStatistics form invoked successfully.”
End if

End If

 94

vonNuemannRatio() Method [Double]
__

Returns the von-Nuemann ratio statistic of the series.

Syntax:

ts.vonNuemanRatio

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.vonNuemannRatio ‘Display von-Nuemann Ratio
End If

Year() Method [Long]
__

Returns the Julian year of an observation.

Syntax:

ts.Year(DateSerial)

The Year property has these parts:

Part Type Description

DateSerial Variant Dbank date serial.

Example

Dim X as New dbTimeSeries
If X.Read(“example[first.bp]bpeir”) Then

MsgBox X.Year(“1971:3”) ‘Displays 1971
MsgBox X.Year(11) ‘Displays 1971

End If

 95

Zeros() Method [dbTimeSeries]
__

Generates a series with zeros for all observation values.

Syntax

ts.Zeros()

The Zeros method has these parts:

Part Type Description

Length Long Length of series (or number of observations)

Example

Dim X as New dbTimeSeries
X.Start = 1
X.Zeros(100)
X.Title = “Variable with 100 zeros”
X.Save(“example[ace]zeros”)

